
transformations we obtain the coefficient with (q-~) in the Laurent expansion of the inte- 
grand (23) at the point q = 0, which is also the residue of the integrand at this point: 

a-~=--F''~o(Aln+l~ (ne~(~d)q- 1)! ' (24) 

where en(ad)  i s  a t r u n c a t e d  e x p o n e n t i a l  s e r i e s ,  

e~ ( ~  = 
k=0 k! 

Then the  f i n a l  s o l u t i o n  fo r  t he  t e ~ e r a t u r e  o f  a l i q u i d  moving in  an underground channel  i s  
w r i t t e n  in  the  form 

@= exp --2"76" ~BiQ exp 2.385 Biq ~ - -exp( - -  1.28Fo'), 2.385 BiQ J (n-q- 1)! ' 

where Fo'= ax'/R 2. 
Equation (25) is an approximate solution of the problem examined here. However, it is 

considerably simpler than the solution obtained by Van-Heerden. 

The graphical comparison of experimental data and the results of calculations with Eq. 
(25) and the equations of Van-Heerden [I] in Fig. i shows that they agree well. 

NOTATION 

%gr, thermal conductivity of the ground; c, specific heat; 0, density; a, diffusivity; 
Q, unit quantity of heat transferred by the liquid through the channel cross section per unit 
of time; r, distance over radius from channel axis; tg r (r, x, T), temperature of the ground 
as a function of the radial and axial position and time; ta(X , T), temperature of the liquid; 
V, linear velocity of the liquid; to, initial temperature. 
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. 
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DISTRIBUTION OF THE DISPERSE FRACTION OF AN INJECTED 

POLYDISPERSE JET IN A GAS FLOW 

I. L. Mostinskii, D. I. Lamden, and O. G. Stonik UDC 532.525.3 

The distribution of a polydisperse droplet jet over a gas flow is theoretically 
investigated. Results are given for specific nozzles. 

Questions of the distribution of a disperse condensed phase over a gas flow are of im- 
portance in a whole series of processes of chemical engineering, the cooling of hot gases, 
combustion, etc. As a rule, this phase is introduced in individual regions using a dispers- 
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ing device placed at the inlet cross section and directed either along the flow or at an an- 
gle to it. The nozzles usually used for spraying liquids are characterized both by a suffi- 
ciently broad spectrum of dimensions of the resulting droplets and by a sufficiently large 
aperture angle of the spray. This is usually the case for the widely used centrifugal noz- 
zles, where the droplets are distributed uniformly over the cross section of the spray pro- 
duced -- mainly along the generatrix of the spray cone. For straight-jet nozzles, this effect 
is considerably more weakly expressed; the drop distribution over the spray cross section is 
sufficiently uniform and its aperture angle is small. 

When gradually entrained by the gas flow, drops of different dimensions, with different 
initial velocities, describe significantly different trajectories. The investigation of the 
disperse-phase distribution over the flow cross section as a function of the distance re- 
quires a careful consideration of this picture as a whole. These difficulties are the rea- 
son why the literature includes very few (see [1-3], for example) analytical investigations 
of the disperse-phase distribution in a flow. This is the case not only for polydisperse 
sets of d~ops but even for the three-dimensional motion of individual drops. The present 
work attempts a theoretical description both of the motion of individual drops and of the dis- 
tribution of their polydisperse combinations in a flow in conditions of nonuniform disperse- 
phase injection. 

Taking account of the character of these problems, little attention is given below to 
the analysis of particular characteristics of systems of disperse-phase injection, which has 
been subjected to fairly detailed study in the existing literature, but instead interest is 
confined to the processes of disperse-phase propagation in the flow. All the parameters re- 
quired for this investigation -- relating to the disperse composition, velocities, and so on, 
of the polydisperse combination of drops (particles) introduced in the flow -- are assumed to 
be known from the characteristics of the corresponding nozzles (see [I, 4], for example). The 
injection of a disperse nonvolative phase in the form of a jet (direct-flow nozzles) or cone 
with the longitudinal axis either in or perpendicular to the motion of the flow is considered. 
The influence of the droplet jet on the gas flow is neglected, and its velocity v G is regard- 
ed as a constant. In addition, continuous conditions of nozzle operation are assumed, lead- 
ing to a steady distribution of the droplets in the flow~ Finally, in considering drop mo- 
tion, all the forces acting on the drops from the gas flow, except for hydraulic drag, will 
be ignored. This assumption holds if the gravitational displacement of the drops may be neg- 
lected in comparison with its displacement by the flow, as is the case in most processes. 

The problem is considered in the following formulation~ Suppose that a nozzle is placed 
in the gas flow at some point which is taken as the coordinate origin and injects into the 
flow a polydisperse droplet jet characterized by the density of the mass distribution func- 
tion of drops over the diameter and over their angle of ejection with respect to the nozzle 
axis fm(~, e). Then the mass of drops ejected in unit time in the range of angles from e to 
0 + d0 with respect to the nozzle axis and having diameters of from ~ to 6 + d~ is defined as 

dmN = M ~  (~, O) d~dO, (1) 

where M is the total mass flow rate of disperse phase. 

The introduction of fm(~, 0) assumes cylindrical symmetry of the jet emitted by the noz- 
zle with respect to the nozzle axis. Below, attention focuses mainly on the determination 
o~ the density§ the mass d~stribution function of the drops with respect to the flow gm 
(r, ~), where r is the radius vector of the point at which the distribution function is de- 
termined. This is called the point of observation. The mass of drops with diameter from 
to d + d~ in the element of volume dV including the observation point ~ will then be speci- 
fied by the expression 

draG= g~ (~, 6) d6dV. (2) 
It is obvious that the function gm(~, ~) is the most general characteristic of the distribu- 
tion of disperse phase in the flow. In particular, if it is required to know the total drop 
mass in volume dV at the point of observation, for example, it is sufficient to integrate Eq. 
(2) over all drop diameters present in dV. So as to be specific, consider, first of all, a 
nozzle with its axis perpendicular to the gas flow. Below~ the distribution function ob- 
tained in this case will be generalized to the case of a parallel nozzle axis. 

A plane is drawn parallel to the gas flow so as to pass through the point of observation 
and the point of emission of the polydisperse jet flow. This plane is called the observation 
plane. Suppose that it forms an angle O with the nozzle axis (Fig. i). The abscissa X is 
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Fig. i. Initial coordinate system: 
~, observation plane; (x, y), obser- 
vation point, at which the distribu- 
tion function is determined. 

chosen so as to lie along the flow in this plane, while the Y axis is the projection of the 
nozzle axis onto the observation plane. 

All the drops with a velocity vector lying initially in the observation plane remain 
there subsequently, since the drag force acting on the drop is directed along the line of 
drop relative velocity. Suppose that the equation of the trajectory of a drop of diameter 6 
takes the form 

F(x, g, 8, ~ ) :  O, (3) 
where (p is the angle at which the drop is emitted into the gas flow with respect to the axis 
Y. Specific forms of this dependence will be established below. 

Choosing the element of volume at the observation point dV = ydedydx, a drop of diameter 
6 will be in this volume for a time dT = dx/vx where Vx is the component of the drop velocity 
along the axis X. In this time, for an observation time at an angle of cp to the nozzle, the 
mass of drops with their diameter in the range from 8 to ~ + d~ introduced is 

Mfm (6, 01) cos ~ dSdOd~d*, (4) 
dmN= 2nV 1 - -  cos2~ cos20 

where cos01 ~ cos~ cos0 (Fig. I). This is precisely the mass present in the chosen element of 
volume at the observation point, since this is a steady problem, and there is no loss of mass. 
Note that, using the relation between ~ and y at fixed ~ and x in Eq. (3), d~ in Eq. (4) 

-~F/ 3F09. Comparison of Eqs. (2) and (4) leads may be replaced by the expression d~ ~--dy~u 

finally to the following expression for the density of the mass distribution of drops over 

the flow 

Mf~ (6, 0~) cosy OF~Or (5) 
gm (x, g, 6) = -- 2~v~gFi -- cos2~,cos20 OF/8~ ' 

where v x is taken at the observation point. 

The right-hand side of Eq. (5) includes the angle ~. To obtain the explicit form of the 
dependence gm(X, y, ~), it is necessary to take account of the relation of ~ with x, y, and 6 
determined by the trajectory of drop motion in Eq. (5) -- after performing the differentiation 
on the right-hand side, of course~ This entails solving Eqo (3) with respect to ~ (analyti- 
cally or numerically), and substituting the result into Eq. (5). Below, on the basis of the 
specific form of the function F, and analytic dependence is obtained for the specific drop- 
distribution spectra for various geometries of their introduction in the flow. 

In the case when the jet axis is parallel to the gas flow, the drop distribution will 
be of cylindrical symmetry and the sym~netry axis will coincide x~th the jet axis. It is then 
sufficient to determine the drop distribution in any plane containing the jet axis. Setting 
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G = 0 in Eqo (5) and assuming that Eq. (3) is specified in this plane, the abscissa in this 
plane will then be directed along the flow and coincide with the jet axis, and the ordinate 
will pass through the point of drop injection. Finally, when the drop in introduced through 
a jet placed along the flow, Eq. (5) takes the form 

g ~  (x, y, 6) - Mf~ (6, ~) ctg~ OF/@ , (6) 
2nv~x OFIO~ 

here v x is taken at the point of observation (x, y), and ~ is obtained from Eq. (3). 

Simplification of Eqs. (5) and (6) occurs for specific types of nozzle. Thus, in the 
case of a flow-through nozzle, the angular dependence of the density of the distribution 
function fm(~, 0) may be neglected and the velocities of all the drops may be regarded as 
initially parallel. Then the drops in the gas flow will be distributed in a layer of thick- 
ness D, where D is the nozzle diameter. Note that, for a flow-through nozzle, it is natural 
to consider only the case when it is perpendicular to the axis of the gas flow. Neglecting 
the distribution function on the point of emission of the drops from the sprayer nozzle, 
it may be assumed that the drop distribution in the plane parallel to the gas flow and in- 
cluding the nozzle axis will also be the true distribution of drops in the gas. The equa- 
tion of the drop trajectory in this plane -- Eq. (3) takes the form (with o= w/2 = const) 

F(x, V, 6 ) =  O. (7) 

It is evident from Eq. (7) that specifying the observation point at once fixes the diameter 
of the incident drops. Thus, the distribution function in this case depends only on the co- 
ordinates of the observation point and expresses the total drop mass in unit volume around 
this point; Eq. (5) takes the form 

g~ (x, y, 3) -- Mfm (6) 6D (6 - -  6*) OF~@ (8) 
Dv~ 0F/06 ' 

where  D i s  t h e  n o z z l e  d i a m e t e r ,  and 6e i s  t h e  s o l u t i o n  o f  Eq. (7) f o r  6. Note  t h a t  t h e  i n -  
t r o d u c t i o n  h e r e  o f  6 D, t h e  D i r a c  f u n c t i o n  6D(Z) ,  i s  a f o r m a l  m e a s u r e  e x p r e s s i n g  t h e  a b o v e -  
n o t e d  f a c t  t h a t  o n l y  d r o p s  o f  g i v e n  d i a m e t e r  p a s s  t h r o u g h  t h e  o b s e r v a t i o n  p o i n t  i n  t h i s  e a s e .  
I n  d e t e r m i n i n g  any  mass  c h a r a c t e r i s t i c ,  i n c l u d i n g  t h e  d i s t r i b u t i o n  o f  t h e  d i s p e r s e - p h a s e  mass  
over the cross section, it simplifies the integration with respect to 6. 

Now consider the case of liquid dispersion using a centrifugal sprayer. Assume that the 
velocity vectors of the drops emitted by this nozzle lie initially on the generatrix of a 
cone of root angle 2a. Suppose that the nozzle axis is perpendicular to the gas flow . Then 
the plane passing through the observation point intersects the emission cone along th~%wo 
generatriees making angles of • with the axis Y, where ~* is given by the expression 

cos~* ~ cos~/cos0. (9) 

As in the case of a direct-flow nozzle, drops of only one diameter pass the point of observa- 
tion for each of the angles • Then the distribution density ir Eq. (5) takes the form 
(for an orthogonal centrifugal nozzle) 

e,~ (x, v, 6) -_ m/m (6) cos = OF~Or [6s (6 - -  61 ) + 6s  (6 - -  6~)1, ( 1 0 )  
2nv~y cos0 V cos20 -- cos2~ OF/08 

where 61" is the solution of Eq. (3) when ~ = ~*, and 62* is the solution when ~ ~--~*. In 
the case when the axis of the centrifugal nozzle is parallel to the gas flow, drops of only 
one diameter pass the observas point and in this case Eq. (I0) takes the form 

gin(x, Y, 6) = Mf,~,(8). ctgc~ ~3F/@ 6D (6- -6*) .  ( 1 i )  
2nv~x OF~aS 
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Fig. 3. Profile of the mass distribution of drops Pm for 
various cross sections of the flow produced by a direct- 
flow nozzle, x, y, m. 

Y-- s in0 ' p6 [  0 " 3 ( R e l / e - R e ~ / 2 ) - l n 0 , 8 1  l+0"3Rel/2 ] l + 0 , 3 N e ~ / 2  ' (16) 

x = V ctg 0' 6 ~R%ln Re~/2 (1 + 0,3 Re~/2) (17) 
---9 Re~/2 (1 + 0 .3re1/2)  ' 

where s in  e '  and cos 6' a re  determined in  accordance wi th  Eq. (15),  and P-~-PD/PG; Re ~ 6m/~,; 
Reo ~ 6~o/V; Re43= 6vG/~. 

Solving Eq. (17) with respect to Re and substituting it into Eq. (16), an equation for 
the trajectory of the form in Eq. (3) may now be obtained. 

The dependence found in this way includes the quantities vo and ~, which have not yet 
been expressed in terms of the initial parameters. To determine vo, it is assumed that the 
nozzle sprays the drops so that, at the moment of ejection, all the drops have the same pro- 
jection of the velocity onto its axis, equal to Vo. It is simple to find Vo from the mass 
flow rate of the nozzle M. For example, for a flow-through nozzle of diameter D, Vo takes 
the form Vo = 4M/(~D2pD). Thus, in the case when the nozzle is directed perpendicular to the 

flow (Fig. i), ~=~+~ , and vo is easily expressed in terms of its projection V onto the 

axis Y: v0-~-V/cos ~ . It follows from geometric conditions that V .= Vo/cos 9, and thus, for 
the ease of a nozzle orthogonal to the flow, the final expression is obtained for vo in terms 
of the flow rate Vo in the form v0=V0/(cos ~cos0). If the nozzle axis is parallel to the gas 
flow, however, and directed along the flow, then ~ and, if it is opposed to the flow, 
then ~=~--~. In addition, in both cases, v0=V0/cos ~. Thus, the parametersvo and ~ may be ex- 
pressed in terms of the angle ~ and the basic parameters of the problem. This allows vo and 

to be regarded below as known functions of these quantities, and a final form of the de- 
pendence to be obtained for trajectories of the form in Eq. (3). 

The solution of the problem obtained gives the distribution function of drops in the 
flow, but is very cumbersome. To obtain simpler expressions, expedient for engineering cal- 
culations, note that z -- in(l + z) = z2/[l.l (2+z)] in the range 0 < z~8. Then Eq. (16) 
is easily solved for Rel/2: 

where 

sin 0 ' p ~  ~ +  ~ 1 +  0,3 Re~/~ + ~ - - 1  , (18) 

= I -- Y/YA and YA is the asymptotic value of y as x -> 
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Fig. 2. Form of the drop distrSbution over the 
cross section of the flow produced by a centri- 
fugal nozzle, h, cm. 

In Eq~ (ii), 6* must be taken in the form of the solution for ~ from Eq. (3) with �9 replaced 
by ~* = ~ or by ~* = ~--~ , depending on whether the nozzle is directed along or opposite 
to the flow. 

The dependences obtained in this way -- Eqs. (5)-(11) -- give the solution of the present 
problem for various conditions of drop injection in the flow, except for the form of the func- 
tion F(~ Y, 6, ~) from Eq. (3) for the drop trajectory. 

The next step is to obtain Eq. (3), which allows specific calculations to be performed 
by the formula given above. At the same time, taking the requirements of engineering prac- 
tice into account, the (often very cumbersome) expressions obtained here will tend to be sim- 
plified as much as possible~ To this end, a series of approximations are made, always stipu- 
lating their accuracy. 

The equation defining the trajectory of drop motion in the observation plane under the 
action of a drag force takes the form 

~ - - 0 w  0w _ 3 PG kc (Re) m2 (12) 
v~ Ox-~vY Oy 4 PD 

%- 

Here PD and PG a r e  the  drop and gas d e n s i t y ,  r e s p e c t i v e l y ;  w i s  the  r e l a t i v e  v e l o c i t y  of  the  
drop;  v x and vy a r e  the v e l o c i t y  components o f  the  drop;  kc(Re) i s  the  drag c o e f f i c i e n t ,  de -  
pending on Reynolds number. The most g e n e r a l  e m p i r i c a l  dependence f o r  the drag c o e f f i c i e n t ,  
p roposed  in  [1 ] ,  t akes  the  f o r m  

24 ( 1 '  0.183Re1/2+0.013Re). (13) ko(Re) = -Ge v 

In the  range 0 ~ R e ~ 3 0 0  , t h i s  dependence i s  approximated  by the  e x p r e s s i o n  [5] 

24 
k G (Re) = -~e (1 + 0~ Re1/2). (14) 

The range of Re for the drops is completely adequate for most engineering problems, since 
the drop usually becomes unstable at large Reynolds numbers and breaks into smaller parts. In 
addition, at large Reynolds numbers, the drop is intensely decelerated with respect to the 
flow, and the Re rapidly falls in the short initial section to the moderate values considered. 

Suppose that a drop entering the gas flow has an &nitial velocity vo directed at an an- 
gle ~ to the flow. Then v x = v G + wcosS', Vy = wsin0', where 8' is the angle between the 
relative velocity of the drop and the flow and 

cos0 '=  v0cos~- -vG,  isis0, = v0sin~, (15) 
Wo Wo 

2 
where Wo_~v~-}-vG--2vovGcos ~ is the value of the relative drop velocity at the beginning of 

trajectory. Solving Eq. (12) with the drag coefficient in Eq. (14) gives 
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Fig. 4. Dependence of the mass-distribution profile of the 
drops produced by a direct-flow nozzle on the basic parame- 
ters: n = 1 (I), 2(2), 3 (3); PG = 1 (4), 5 (5), I0 (6); 
vo = 5 (7), 15 (8), 30 (9) (a) ; and an example of particle 
selection for uniformity of the drop distribution over the 
gas-flow cross section (b). 

vo sin ~o/v,, 
g* -- 9.9 (2 -~ 0.3 Re~/2) -p6 Re G. (19) 

In addition, the logarithm in Eq. (17) may be approximated, after substituting for Re from 
Eq. (18), by the expression A=[083--0.[In (0d8+Re0~)]|n~. Substitution of these approximat- 
ing relations into Eq. (17) gives a sufficiently accurate description of the trajectories 
with increasing distance from the point of introduction of the drop in the flow. At the same 
time, the condition dx/dy = cot ~ must be satisfied at the point of introduction. Imposing 
this requirement and the usual asymptote-matching procedure, the equation of the trajectory 
may be finally reduced to the form in Eq. (3) with F in the form 

vo (1 - -  ~) cos # } 
F ( x ,  y ,  6, ~ ) = x - b - ~ p  8 " R e ~  f ln~--~q-2 l [0.83--0,11n(0.18 q - R e o ~ F ) ] -  1 . 1 v ~ $ ~ / i )  , (20) 

which is completely analogous to Eq. (3). 

To determine the total error of all the approximations made, an accurate--but very cum- 
bersome -- solution of Eq. (12) with the drag coefficient in Eq. (13) is obtained. The results 
of calculations on the basis of the accurate solution have been compared with Eq. (20) for 
Reo in the range from 0 to 300, and also with variation of the quantity Y = vo cos ~/Vo.~The 
resu!ts of this coNparison sho~that, up to the values 7 = • and Reo = 300, the error in 
determining the trajectories is known to be no more than 10%. The error may only increase at 
large y, which corresponds to the case -- encountered very rarely in practice -- when the com- 
ponent of the drop injection velocity parallel to the flow is close to, or exceeds, the gas- 
flow velocity. In usual conditions, however, when y and Reo are smaller, the error which 
arises rapidly decreases; for smaller Re, the error remains small even for considerably larger 
y, i.e., even for the case of high injection velocities. 

Thus, it may be assumed that Eq. (20) is a good approximation for the equations of the 
trajectory, completely adequate for use in Eqs. (5), (6), (8), (i0), (ii) for gm" Finally, 
as regards the error in the very final values of the distribution gm due to these approxima- 
tions, taking their integral character ~nto account, it is evident that they should not ex- 
ceed the given values of the trajectory errors. 

In the dependences obtained in this way for gm, the expression for v x is still fairly 
cumbersome. Taking account of Eq. (15), it may be written in the form 

v~ = v o +  (Vo c o s ~ - -  vo), 
~o 

where i t  must be remembered t h a t  w = R e v / 8 ,  and Re i s  d e t e r m i n e d  from Eq. (18) .  I n  t h i s  con-  
n e c t i o n ,  i t  i s  e x p e d i e n t  to  o b t a i n  a s i m p l e r  app rox ima te  e x p r e s s i o n  f o r  Vx, i n  the  form 
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v~=vo[1 + $ (vo cos ~_ 1 \  vo ) l l ~ ~ j . - 6  ~08~ Re~/2 ] (21)  

The relative error of this approximation when ---I~?~4 (which is known to be broader than 
the above-noted range of actual variation of the parameter u = vo cos $/VG) does not exceed 
1%. 

It follows from the form of the function gm that it does not include the function F but 
the ratio of its partial derivatives with respect to y and ~. It is obvious that the ex- 
pression for this ratio may easily be obtained by direct differentiation of Eq. (20) for F. 
Finally, the expressions for vo and ~ in terms of ~ appearing in gm were also given above. 

Note, in conclusion, that the influence of possible change in drop size (for example, 
its evaporation in the hot gas flow) on the mass distribution function is not considered di- 
rectly in the present work. Nevertheless, in most of the cases encountered in practice, the 
process of drop evaporation occurs considerably more slowly than its entrainment by the flow. 
Accordingly, the above consideration may evidently also be used for the analysis of processes 
of this type. If it proves necessary to take account of evaporation, however, than the dis- 
tribution function over the gas flow is obtained accurately as in Eq. (5). It is only neces- 
sary here to take account additionally of the change in g in comparison with Eqs. (2) and (4). 

As an example of the use of the dependences obtained, some results are now given of the 
calculation of the distribution of the dispersional attachment in the combustion chamber of 
a magnetohydrodynamic unit. Graphs of the distribution of drops with respect to the mass in 
the flow of natural-gas combustion products are given here. Consider the injection of a poly- 
disperse jet of drops (particles) of K2COs with the following distribution function from [4] 

The f o l l o w i n g  p a r a m e t e r s  a r e  t a k e n  a s  t h e  s t a n d a r d  s e t :  p r e s s u r e  PG = 5 b a r ,  t e m p e r a t u r e  
T G = 2800~  g a s  v e l o c i t y  v G = 100 m / s e c ,  m e d i a n  d i a m e t e r  d ~ = = d ~ C / l n 2  == 100 ~m, n = 2,  p a r t i -  

c I e  i n j e c t i o n  v e l o c i t y  Vo = 15 m / s e c .  

The p a r t i c l e  d i s t r i b u t i o n  i n  a c r o s s  s e c t i o n  1 m f r o m  t h e  p o s i t i o n  o f  a c e n t r i f u g a l  n o z -  
z l e  o r t h o g o n a l  t o  t h e  f l o w  i s  shown i n  F i g .  2. L i n e s  o f  c o n s t a n t  ~m a r e  shown ,  w h e r e  gm = 

M ~ m ;  s e e  Eq.  ( 1 0 ) .  
2n 

The distribution of particles introduced in the flow by an orthogonal direct-flow nozzle 
in various cross sections is shown in Fig. 3. The dashed curve shows the trajectory of mo -~ 

tionof particles with the diameter d m. Here and below, for direct-flow nozzlesgm~--M ~ ," 
D 

see Eq. (8). 

It is evident from Fig. 3 that drops with small diameters rapidly reach the asymptotic 
sections of the trajectory and form a boundary part of the distribution that is practically 
unchanging with distance from the nozzle. Larger particles lead to extension of the distri- 
bution pattern into the depth of the flow with increase in distance of the cross section from 
the nozzle. 

Variation in various parameters of the flow and the nozzle shows that the distribution 
of the disperse phase depends weakly on T G in the range 2000-3200~ but markedly on PG, on 
the initial partial velocity Vo, on the gas velocity VG, and also on the median drop dimen- 
sion and on n. In Fig. 4a, the distribution of Pm in a cross section 2 m from the direct- 
flow nozzle is shown. The parameters indicated in the figure are varied here, but all the 
other parameters remain "standard." 

In a whole series of engineering processes, ensuring sufficient efficiency of their oc- 
currence involves ensuring that the distribution of the disperse phase over the channel cross 
section be as uniform as possible. The possibility of using the given model in choosing the 
optimal nozzle position to achieve this uniformity is illustrated in Fig. 4b. The data are 
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shown for a channel cross section 2 m from two diametrally positioned direct-flow nozzles, 
orthogonal to the flow. The channel diameter is 1 cm, the velocity of disperse-phase injec- 
tion is the same for both nozzles (35 m/sec); all the other parameters of the nozzles and the 
gas flow are "standard." The dashed lines in Fig. 4b show the distributions given by each 
nozzle and the continuous curve shows the total mass distribution function of drops over the 
channel cross section. It follows from the resulting calculations that the correct choice 
of parameters of the injection system may ensure a very homogeneous distribution of the dis- 
perse phase even with a small number of nozzles. 

LITERATURE CITED 

i. V.A. Raushenbakh, S. A. Belyi, I. V. Bespalov, et al., Physical Principles of the Work- 
ing Process in Combustion Chambers of Air-Reactive Motors [in Russian], Mashinostroenie, 
Moscow (1964). 

2. Ya. S. Zholudov, "Choosing the effective trajectory of particle injection by the attach- 
ment in the combustion chamber of a magnetohydrodynamic generator," in: Engineering 
Problems of Magnetic Hydrodynamics [in Russian], ITTF, Kiev (1978), pp. 83-88. 

3. I.L. Mostinskii, D. I. Lamden, D. K. Burenkov, and A. V. Zagorodnikh, "Cooling of high- 
temperature gas in a scrubber," Pro~. Teplotekh., ~, No. 3, 97-103 (1980). 

4. A.N. Shurygin, Design of Nozzles for Liquid Spraying [in Russian], MEI, Moscow (1964). 
5. D.I. Lamden and I. L. Mostinskii, "Evaporation of solvent from a drop of solution mov- 

ing in a hot gas," Teplofiz. Vys. Temp., 14, No. 4, 804-813 (1976). 

PROPAGATION OF SMALL DISTURBANCES IN CONCENTRATED DISPERSED SYSTEMS 

A. F. Ryzhkov and E. M. Tolmachev UDC 532.529.5:66.036.5 

The mechanism of elastic pressure waves in concentrated dispersed systems is 
discussed. It is shown that the continuously relaxing medium model is valid 
for describing acoustic effects in a fluidized vibrating layer. 

Concentrated dispersed systems of the "fluidized layer" (FL) type are characterized by 
the essential nonstationarity of all hydrodynamic processes due to the nonlinear properties 
in the particle bulk concentration. The propagation laws of dynamic disturbances play an im- 
portant role. The dynamic FL characteristics earlier considered were usually related to prop- 
agation of comparatively slow plastic isolated waves during spontaneous or induced change 
of flow of a fluidized agent [I, 2]. Their appearance was related to quasielastic relaxa- 
tion processes due to the nonlinear dependence of the aerodynamic particle resistance on 
their spacing density, earlier found by Roy [3]. In this case the analysis included only low 
layers, with pressure waves propagating along them practically instantaneously [4, 5]. One 
of the most interesting effects, explained within the concepts of incompressibility of the 
fluidized agent in an FL, is the effect of ordered oscillations of the gas pressure and of 
the dispersed phase density (in the form of self-oscillations in boiling [6] and induced os- 
cillations in pulsating [i] and vibrating-boiling [5] layers), characterizing the law of ex- 
pansion cycle, precipitation at each period of oscillation, occurring with a completely deter- 
mined "zero-order" frequency /0~'g/~0. 

Imposing on an FL induced oscillations with a frequency larger than the zero-order fre- 
quency (fB > fo), the action of the relaxation oscillations is restricted by the surface and 
bottom portions of the layer, and their contribution to the formation of the internal por- 
tions of the FL is diminished. At the same time the passage of a pressure wave through a 
high FL is compatible with an oscillation period T B. Under these conditions one must expect 
the appearance of gas compressibility (elasticity), which would lead to resonance effects of 
higher than "zero" order. 

At present the model of interacting, mutually penetrating continua is most widely used 
to describe the behavior of dispersed systems. This model is valid when the characteristic 
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